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ABSTRACT

The role of multistage turbomachinery simulation in the development of propulsion system
models is discussed. Particularly, the need for simulations with higher fidelity and faster
turnaround time is highlighted. It is shown how such fast simulations can be used in
engineering-oriented environments. The use of parallel processing to achieve the required
turnaround times is discussed. Current work by several researchers in this area is
summarized. Parallelturbomachinery CFD research at the NASA Lewis Research Center is
then highlighted. These efforts are focused on implementing the average-passage
turbomachinery model on MIMD, distributed memory parallel computers. Performance
results are given for inviscid, single blade row and viscous, multistage applications on

several parallel computers, including networked workstations.

INTRODUCTION

The analysis of flows through turbomachinery is one of the most difficult and challenging
aspects of advanced propulsion system design. Yet the potential benefit of increasingly
detailed codes which can simulate these flows has driven considerable research in this

area. Future propulsion system requirements such as reduced noise and emissions, leading
to higher pressure ratios and temperatures, can have a large impact on the design of the
turbomachinery components. Computer codes which can predict the complex flow
patterns and performance of turbomachinery components have proven to be valuable
design tools. The problem becomes even more complicated, however, when one

considers the turbomachinery components as part of an overall propulsion system.
Compressor stall and surge are phenomena which are very much dependent on what goes
on both up and downstream of the compressor. The interactions between the propulsion
system components must be taken into account.

Unfortunately, limitations in computer speeds have restricted the fidelity of propulsion
system analyses. Most system level analyses are performed using lumped-parameter
models. Results from these models may prompt further analysis using a more detailed (e.g
two or three-dimensional) approach. The results from the detailed analyses are then
manually fed back to the lumped-parameter model. This process can be time consuming,
especially if the two or three-dimensional analysis requires tens to hundreds of hours of
computing time. In addition, the lack of any computer-automated path to feed information
back and forth between the different levels of fidelity further limits productivity.



One may conjecture that a full, three-dimensional nose-to-tail simulation of the propulsion
system will provide the ultimate answer. This approach, however, does not always make
sense depending on the ultimate goal of the analysis to be performed. High resolution may
be required to analyze a propulsion system component individually. However, modelling of
high-frequency phenomena in one component, from a system point of view, may be
wasteful if no other component can respond to those frequencies. A multilevel-of-fidelity
approach makes sense in propulsion system simulation.

A multilevel approach has been proposed at the NASA Lewis Research Center as part of
the Numerical Propulsion System Simulation (NPSS) project (ref. 1). The technique is
called "zooming", where higher resolution can be obtained by "zooming in" from simple
lumped-parameter simulations to two or three-dimensional codes. If appropriate, multiple
two or three-dimensional codes can be combined. These codes are not necessarily limited
to a single discipline, but could involve several disciplines ( e.g. fluids and structures ). It
is at these more complicated levels where parallel processing can play a major role in
providing the required computing resources.

Parallel processing will not only allow the complex, multidisciplinary applications to be run
in reasonable computing time, but will also allow interactive single discipline codes to be
developed. The idea of interactive use of CFD codes is being investigated as part of the
Integrated CFD and Experiments (ICE) program (ref. 2) at the NASA Lewis Research
Center. The initial focus of the ICE program will be on turbomachinery flow physics
research. One of its elements is the exploration of using parallel computing to provide
interactive use of CFD codes for experimental setup. Here the term interactive means
sufficient turnaround time to impact the outcome of an experiment. Repeatability of
experimental conditions for turbomachinery is difficult, making it is desirable to have the

outcome of a CFD analysis before the conditions change. Ideally, this would be minutes,
but could be as much as a few hours. The ever increasing performance of parallel
computer hardware is expected to make the former goal a reality.

USE OF PARALLEL TURBOMACHINERY CODES IN
ENGINEERING-ORIENTED ENVIRONMENTS

Two different situations where parallel turbomachinery codes could be useful have been
introduced. The first is the large, multidisciplinary application where parallel computing is
necessary to perform an analysis in reasonable time. The second is the interactive
application, where results from the code are desired within an appropriate time frame to
impact a decision, such as experimental setup. Examples of each of these cases are given
here.

For the first example, consider the lumped parameter turbofan simulation as shown in
Figure 1. The fan, compressor and the two turbines are all modelled by performance
maps. The other components are modelled through application of the unsteady equations
of conservation of mass, momentum and energy for an inviscid fluid within a control
volume. A detailed description of a typical lumped parameter engine simulation is given in
reference 3. Suppose that a pressure disturbance leads to the fan component map moving
into the stall region. Typically, the stall condition can be handled in one of two ways. The
first is to alert the user that a stall condition has arisen and to halt the simulation. The
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other possibility is to model the in-stall behaviorof the fan, using an approach similar to
that of reference4.

In either case,more detailed information is required,and could be achievedusing zooming,
as illustrated in Figure2. A detailed,3-dimensionalanalysiswould be usedto investigate
factors leading up to stall, such as tip clearanceeffects. The analysiswould be similar to
that of reference5. A three-dimensional,parallelturbomachinery code would be intialized
by the near-stallconditions from the lumped-parametermodel. The initial fan inlet
velocity, and exit pressurewould be used. The three-dimensionalcode would then be run
to examine tip clearanceeffects. Ideally,the analysiswould be multidisciplinary, where
structural and thermal effects are taken into account, as thesecan have a significant
impact on the tip clearancegap. The analysiscould lead to the evaluation of various
casingtreatments (ref. 6) in an attempt to improvestall margin. If a particular casing
treatment looks promising,a modified fan mapwith the improvedcharacteristics would be
returnedto the lumped-parametermodel. The system-levelmodel would then be rerun to
determine if improvedperformanceis attained.

A fast turbomachinerysimulation is also desirablefor use in setting up turbomachinery
flow physics experiments. Oneof the considerationsin setting up experimentalprobesis
that they be located in a regionwhere accurate measurementscan be made with minimum
interference. An exampleof this is the placementof static pressureprobes within
experimentalturbomachineryrigs. The probeat the inlet of the rig must be placedsuch
that it is well upstreamof shocks generatedby the first rotor. The use of a
turbomachinerycode with rapid turnaround time would allow this determination to be
madeat the operating conditions for the current run. The code would also be useful for
determiningwhere measurementsshould be madeto capture complex flow phenomena,
such as secondaryflow vortices. Conceivably,the code could even be usedto
automatically position the instrumentation (e.g. laseranemometry). As facility conditions
are changed,the code could be re-run to determine the new measurementlocations of
interest. The constraints of facility operationcan make rapidturnaround of this code
critical to efficient acquisition of data.

It is clear that the above capabilities are desirable. In the case of propulsion system
simulation, zooming can reduce propulsion system computational requirements by a large
amount. Generation of the database for the simplified models will still require repeated
application of the complex component models, such as three-dimensional turbomachinery
codes. The effectiveness of the ICE environment will be enhanced by turbomachinery
codes with rapid turnaround time. However, current approaches to three-dimensional,
multistage turbomachinery simulation demand tens to hundreds of hours of state-of-the art

supercomputer time. This has prompted the investigation of using parallel processing to
reduce these times. The potential benefits are two-fold. The extremely large
turbomachinery applications can benefit through the use of parallel computing on
supercomputers such as the Cray Y-MP and C90, which are composed of multiple
processors. Parallel computing can also provide cost-effective alternatives to large
supercomputers, through the use of dedicated, low-cost parallel processors or networked
workstations. The use of parallel processing comes at a price, however. Some of the
issues involved in the use of parallel computers are addressed in the next section.



PARALLELCOMPUTINGISSUES

Given the need for parallel turbomachinerycodes, one is faced with the formidable task of
selecting parallelcomputing hardwareand software. Unfortunately, these two areasare
not mutually exclusive. The selectionof a parallelprogrammingenvironment often
determines the choice of hardware. The same is usually true if one approachesthe
problemby first selecting the parallelcomputinghardware.The user is then limited in the
programmingtools available.

Parallelcomputers can generally beclassified by two characteristics- control structure and
memory interconnection. The two predominantcontrol methodologiesare Single
Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD). Likewise,
there are two predominantmemory interconnectionstrategies - sharedmemoryand
distributed memory.

The distributed memory architecture offers more scalability than the shared memory
architecture. However, programming of distributed memory machines tends to be more
complex, since the programmer is required to manage the communication of information
between processors. Ideally, one would like to program a distributed memory machine in
much the same fashion as shared memory machine. Current research (ref.7) is addressing
this issue. For the present discussion, however, we will focus on the distributed memory
architecture, and its two possible control structures.

The SIMD computer requires that each processor execute the same instruction at the same
time. Despite this seemingly restrictive architecture, a large number of applications can be
implemented effectively on SIMD computers. These are usually limited to single-discipline
applications. The control structure of the SIMD machines prompted the development of
software tools which could easily exploit its synchronized, lock-step characteristics. This
led to the development of the data parallel method of programming, which allows the
same operation to be performed concurrently on multiple data elements. The first example
of this was CM Fortran, implemented on the Connection Machine (ref. 8). Ideally, the
programmer is shielded from details of low-level programming, load-balancing, and data
communication. However, immature versions of data parallel compilers have forced
programmers to address these issues (refs. 9,10,1 1) to achieve reasonable levels of
parallel efficiency. Despite these difficulties, a strong case can be made that the
programming environment, and not the architecture, has attracted many users to the SIMD
machines.

The MIMD architecture does not posses the rigidity of SIMD, allowing multiple threads of

control to exist concurently. It's most obvious advantage is that it can truly handle
different applications concurrently, such as a CFD and a structures calculation. In
addition, the SIMD model of computation can be implemented on MIMD machines.
Another practical approach to parallel computing, networked workstations, falls under the
MIMD classification. Thus a broader class of parallel computers is encompassed by the
MIMD architecture. Programming environments on MIMD machines, due to their more
complex nature, are low-level and not as advanced as those on SIMD machines. The
programmer is typically responsible for all of the complex issues in parallel computing,
such as managing data communication, balancing loads, and mapping the application onto



the processors.

Higher-levelprogrammingtools for MIMD computers are required before these machines
can be effectively utilized. A significant body of research is currently being conducted in
this area. For example, data parallel programming environments on MIMD machines can
be considered. FORTRAN D (ref. 12) is a data parallel programming system, which can, in
fact, provide portability between SIMD and MIMD machines. However, a fully functional
FORTRAN D system does not yet exist. This work is still in the research stage. The use
of data parallel compilers on MIMD machines still does not address how one expresses
functional parallelism (e.g. CFD and structures) on MIMD machines. Object-oriented
approaches (refs. 13,14,1 5) offer the potential for expressing functional parallelism, but
again, are in the developmental stages. There are other approaches to programming
MIMD, distributed memory computers, but all must be evaluated from the standpoint of
overhead. No clear standard in this area has yet emerged.

A thread of commonality does exist between MIMD computers, which is the
communication between processors via messages. It is conceivable to develop a set of
message-passing primitives that is portable between various MIMD machines. This is the
focus of the Application Portable Parallel Programming Library (APPL) effort (ref. 16).
APPL is available on a variety of parallel machines, including networked workstations.
APPL provides portability in the coding of communication routines, and allows for the
mapping of parallel tasks to parallel hardware external to the application code. Higher-level
programming tools, such as FORTRAN D or object-oriented environments, as they mature,
could conceivably be implemented on top of software such as APPL.

It should be noted that APPL provides portability between different classes of MIMD
machines, but not between MIMD machines and SIMD machines, such as the CM-2.

However, the next-generation Connection Machine will support the MIMD, message-
passing model of computation as well the SIMD, data-parallel model (ref. 17). APPL is
based on previous work in portable message-passing environments at Argonne and Oak

Ridge National Laboratories (refs. 18,1 9).

CURRENT PARALLEL TURBOMACHINERY CFD RESEARCH

The literature contains many citations of various parallel algorithms as applied to the
solution of simplified partial differential equations (e.g. convection-diffusion equations,
driven cavity, etc.) and linear systems of equations. The number of references shrinks

dramatically when one narrows the search to parallel turbomachinery applications. Of
these, many consider only a single blade passage or a cascade of airfoils. There are only a
few references dealing with the development of parallel codes that can simulate flows
through multiple blade rows.

Current research in the development of parallel, multistage, turbomachinery CFD codes
reflects the diversity of the hardware and software outlined above. Reference 1 1

describes the implementation of a time-accurate, two-dimensional, implicit code for solving
the compressible Navier-Stokes equations within a turbine stage. The code is third-order
accurate, and a zonal grid approach is used to handle the complex, non-stationary
geometry. This code was ported to the Connection Machine 2 (CM-2), a SIMD,



distributed-memorymassivelyparallelcomputer. A fundamental part of the algorithm in
the code is an approximate factorization technique which results in tridiagonal systems of
equationswhich must be solvedin each of the three coordinatedirections. A
diagonalizationprocedureis used,makingthe systemsscalar tridiagonal, although the
block-tridiagonalform is retained in wall-normaldirections.

A parallelcyclic reductionalgorithm (ref. 20) is used to solve the tridiagonal matrices.
This algorithm is providedas an optimized library routine on the CM-2. The rest of the
code is implemented usingCM Fortran. Reference11 notes that difficulties were
encounteredin turbulent eddy viscosity calculationsand information transfer between
grids. Here, lower-level CM Pariscodingwas used to improveefficiency. It was noted
that the rotor and stator blade row calculations could have beendone in parallel.
However, the parallelblade row approachwas not implemented. The achieved
performanceof the code on the CM-2 approachesthat of a single-processorCrayY-MP
version for largegrids.

A parallel implementationof a time-accurate, implicit turbomachinerycode is discussedin
(ref. 21). The code solves the unsteady, 3D Eulerequations. An approximate
factorization schemeis used which results in a two-pass solution process. The first pass
involves the solution of a block, upper-triangularmatrix, and the second pass is a lower-
triangular matrix solution. Blockedgrids areused to handlethe complex, non-stationary
geometry. A unique grid distortion techniqueaccounts for the rotation between blade
rows.

The blocked-grids are exploited as a way to parallelize the code. Individual blocks are
assigned to processors and solved in parallel. A MIMD model of computation is used, as
well as an object-oriented, portable, programming environment. The portable environment
allows the code to be run on various MIMD configurations, from dedicated parallel
computers to networked workstations. High parallel efficiency using five processors is
achieved, but it must be noted that a fundamental change to the algorithm was made.
The original serial algorithm maintained an ordering in which the various blocks were
solved. The ordering was done to preserve the implicit way in which the original
unblocked system was solved. In order to solve the blocks in parallel, the implicit
relationship between blocks must be relaxed. This results in an error between the
sequential and parallel algorithms. The absolute value of the error for the test case given
in reference 21 did not exceed three percent. The error could vary for different test
conditions. For example, the given test case was not transonic, which may have a further
impact on stability and accuracy. Future work in this area will include methods to reduce
this error, such as additional iterations in the linearization loop.

The final parallel turbomachinery code to be reviewed is based on the 3D average-passage
form of the Navier-Stokes equations (ref. 22). Modelling of interactions between blade
rows is used to simplify the computations, in contrast to a fully time-accurate calculation.
The entire turbomachinery flow path is solved for each blade row, with neighboring blade
rows accounted for by a distribution of body forces, energy sources, energy correlations
and velocity correlations. The algorithm used within each blade row is based on a finite-
volume, four-stage Runge-Kutta technique. Local time-stepping and residual averaging are
used to accelerate convergence. The solution process iterates between 3D and



axisymmetric solutions of the flow path. Overallconvergenceis determined by comparing
the axisymmetric averageof each blade row's flow field. If the difference between the
axisymmetric solutions is greaterthan a set tolerance, the inter-blade-rowterms are
updatedand the Runge-Kuttaprocedureis repeateduntil convergenceis achieved.

A parallelversion of this algorithmwas implementedon the CrayY-MP, where individual
blade rows were solvedon separateprocessors. High efficiencies were obtained in this
case, with a sustainedperformanceof about 1.5 Gflops. Evenat this rate, the simulation
of a four-stage compressortook 2.2 hours of CPUtime on a dedicatedCray Y-MP.
Current efforts at the NASA Lewis ResearchCenterare devoted to extending the parallel
algorithm of this codeto a moremassivelyparallellevel. Theseefforts are describedin the
next section.

CONSIDERATIONSIN PARALLELIZINGTHE AVERAGE-PASSAGE
TURBOMACHINERYCODE

The existing version of the parallelaverage-passageturbomachinerycode exploited the
fact that individual blade-rowscould becomputed in parallel. This model of coarse-grained
parallelismis sufficient if only a few processorsareavailable in a parallelmachine.
However, current distributed-memoryparallelcomputers can consist of more than 1000
processors. Clearly, an extendedapproachto parallelizationis requiredto take advantage
of this number of processors.

Oneof the first considerationsmadein the developmentof the parallelcode was the
volatility and variety inherent in the parallelcomputer hardware market. It was decidedto
focus on MIMD parallelcomputers and to use a programmingapproachthat would make
the parallelcode as independentas possiblefrom the target parallelhardwarewith the
least amount of overhead. To accomplishthis, the Application PortableParallel
ProgrammingLibrary (APPL),as describedpreviously, is used.

The partitioning approach must beselected next. The obviousapproachto achieving
greater parallelismis to partition the grid within each blade row. Now a two-level parallel
structure exists as shown in Figure3(a). A two-dimensional partitioning of the three-
dimensionalgrid in the axial and radial directions is used. Thesedirections were chosen
(as opposedto axial and tangential) so that the axisymmetric solution would be effectively
partitioned in addition to the 3D solution process. Figure3(a) shows the division of the
computational domainwhich consists of four bladerows. Eachblade row is partitioned
into two subdomainsboth axially and radially. The last subdomain illustrates the
partitioning of the axisymmetric calculationwhich occurs in each blade row. Also shown
in the figure is the requiredcommunicationbetween the blade rows. Eachblade row
requires information on the axisymmetric mesh from each of the other blade rows. This
can beviewed as a global communicationstep.

A natural communicationpattern exists betweeneach subdomainwith the blade rows
shown in the illustration. Ideally, this natural communicationpattern can beexploited
through a mappingof the paralleltasks to the parallelcomputer architecture. Mapping of
the paralleltasks is beneficial for two reasons. The first is the software engineering
benefit. The logical associationof natural communication in the parallelturbomachinery
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modelwith the physical communication channels in the parallel computer is useful for code
organization and debugging.

The second potential benefit is communication performance. The significance of the
mapping process in the overall performance of the parallel code will be dependent on the
granularity of each task. For very large-grain tasks, where the computation to
communication ratio is high, performance will depend very little on the mapping (assuming
that routing of messages is supported in the communication kernel). As the granularity
decreases, mapping may become more important. The mapping issue can be important
even where direct-connect routing is used, such as the Intel iPSC/860 (ref. 23). Random
allocation of parallel tasks to processors could lead to network "hot-spots". An excellent
discussion on the effects of "hot-spots" on communication performance can be found in
reference 24.

Communication performance information is given in reference 25 for a multiblock grid
calculation on both the iPSC/860 and the Delta machines. It was shown that the

interprocessor bandwidth could vary by as much as 75 percent using different random
assignments of blocks to processors. The net effect on the code's performance was not
discussed, however. Rather than leave communication performance to chance through
random processor assignment, a mapping is used which minimizes interprocessor network
traffic. The mapping effectively uses a ring topology for one-dimensional communication
and a mesh topology for two-dimensional cases.

The use of the mesh topology for the two-level parallel implementation of the average-
passage turbomachinery code is illustrated in Figure 3(b). The mesh interconnection is
actually implemented on the Intel Delta Machine (ref. 26) and is a subset of other
interconnection topologies such as the hypercube network. A nearest-neighbor
interconnection exists within the blade rows. The communication step between blade
rows is handled via a contention-free, global communication procedure.

The multi-stage Runge Kutta technique (ref. 27) used within each blade row is highly
parallel (refs. 28,29,30). The bulk of the computation in the Runge Kutta algorithms
occurs in the computation of fluxes and artificial dissipation. These portions of the code
can be parallelized through a straightforward decomposition of the grid. Boundary
conditions and convergence acceleration routines require more effort to parallelize, and
may even require the use of alternative algorithms. Examples of some of these issues are

given in the next section.

INITIAL TEST CASES

Two test codes were developed as a first step toward a massively parallel, 3D, viscous
version of the average-passage turbomachinery code. The parallel codes were initially
developed and debugged on the Hypercluster parallel computer (ref. 31). The Hypercluster
is a test-bed environment for parallel processing research. As such, it provides a robust
environment for parallel code development. The use of APPL on the Hypercluster allows
porting of the codes to other parallel machines. Various features of the Hypercluster
environment proved useful in the development of the test codes described here. The first
is a time-out mechanism built into the communication routines. The time-out feature



interrupts a processor waiting to receive information after a default time period. An error
message is then sent to the user's console defining which processor timed-out. This
allows rapid detection of communication bugs in the code. Another useful feature is an
array bounds checking facility. This allows run-time error messages to be generated if an
array access goes beyond the defined array dimension. This feature is extremely useful in
detecting bugs related to partitioning of arrays on parallel computers. The Hypercluster
also provides built-in performance monitoring tools, where graphical displays identify time
spent in computation, communication, etc.

The first test code is a medium-grain parallel version of ISTAGE, a 3D Euler code
configured for a single blade row. Details on this code can be found in reference 32. A
one-dimensional, axial partitioning of the grid is used, since the grid is the longest in this
direction. This implies that boundary conditions at the hub and tip regions, as well as the
blade surfaces, are parallelized. The inlet and exit boundary conditions are computed
serially. Each subdomain is mapped into a ring configuration, on machines where it is
appropriate. A convergence acceleration technique, implicit residual averaging (ref. 33), is
used in this code. The recursive nature of the Thomas algorithm used to solve the
resulting tridiagonal matrices requires special attention when implemented on a parallel
computer. The initial version of the parallel code leaves the Thomas algorithm as a serial
calculation. Each processor waits for the data it requires in the recursion relation before

computing it's part of the sequence.

The initial results obtained using this approach are shown in Table 1, and are reasonable
for up to four processors. After this point, the use of additional processors provided little
additional benefit. This was due to the fact that now the unparallelized residual averaging
routine represents a significant serial fraction of the overall computation. Increasing the
size of the problem (i.e. the size of the grid), consistent with the idea of scaled speedup
(ref. 34), would certainly improve the speedup results. Results for a larger grid are shown
in Table 2. Indeed, the speedup improves for this case. However, scaling of the problem
may not always be interpreted as increasing the size of the grid. One method of scaling,
in propulsion simulation, could be the coupling of multiple propulsion system component
simulations. Ideally, one desires the best performance for each simulation for the given
grid sizes. Therefore, a residual averaging procedure that is more amenable to parallel
processing is required.

There are several options to consider in parallelizing the residual averaging routine. Two
are described here. The first method essentially decouples the full matrix solution between
processors in the axial direction. This is called the decoupled residual averaging technique.
Each processor solves an independent tridiagonal system resulting from the grid points
within it's own subdomain. This approach works well for up to 20 processors. After this
point, the solution loses the benefits of the increased stability margin afforded by the
residual averaging process, and becomes unstable. It should be noted that this is due, in
part, to the low Mach number application for which ISTAGE was configured. Decreasing
the CFL number, and hence, the integration time step solves this problem. However, this
results in a decrease in the rate of convergence. It is also expected that higher speed flow

• applications will not be as sensitive to the decoupled residual averaging technique.

The second method employs an iterative, Jacobi relaxation scheme on the original,



unfactored residualaveragingequations. This technique was more robust, and allowed
runs using up to 32 processorswith the given grid size. Four iterations of the Jacobi
scheme yieldeda better convergencerate than the direct solution technique, and required
about the sameamount of cpu time as the decoupledtridiagonal solution approach. It
should be pointed out that this technique was tested for only one set of conditions, and
additional iterations may be requiredfor other operating conditions.

Figure4 illustrates performanceresultsobtained on the Hypercluster, the iPSC/860 and
the Delta Machine. The figure shows a logarithmic plot of time versus numberof
processors. Also shown, as a straight line acrossthe plot, is the single-processorCray Y-
MP performancefor the samecode. The best performanceis achievedwith the iterative
residualaveragingtechnique and compiler optimizationson the iPSC/860. Similar
performancecan be expected on the Delta machine. Roughlyhalf of the Y-MP
performanceis achievedusing 32 processors.

The decoupled residualaveragingtechnique is used in the other cases. Severalinteresting
observationscan immediatelybe made for these latter cases. The achievedspeedupon
each of the three machines is about the same. This indicates that the dominant effects
must be other than hardwarecommunicationtime. This only makessensewhen one
considersthe Delta machine,with measuredcommunicationperformanceabout 3.5 times
(ref. 25) that on the iPSC/860. If hardwarecommunicationwere the dominant factor, one
would expect a better speedupon the Delta machinethan on the iPSC/860. Since this is
not the case, other factors must becontributing to the loss in efficiency.

Useof the serial fraction metric (ref. 35) confirms this hypothesis. The serial fraction of
the code is that part which cannot be computed in parallel. It can be determined
experimentally from speedupinformation using the following equation:

where f is the serial fraction, s is the speedup,and p is the numberof processors. The
serial fraction metric is shown in Table 3 for the three different machines. Fromthe table,
it is evident that the serial fraction is relatively constant after eight processorson all three
machines. This is expected, sincethe samecode was used on all three machines. The
serial fraction of the code should be the samein eachcase. If hardwarerelated
communication costs were causing the inefficiency, one would expect an increasingserial
fraction as the numberof processorsincrease.

There is a large jump in the serial fraction for the three processor case on all of the
machines. Load balancing is suspected in this case. The serial fraction then decreases
and settles out at a value of about four percent on all three machines. This trend makes

sense, as decreasing the granularity of the problem minimizes the load balancing effects.
The load balancing issue is discussed in more detail shortly.

Another interesting effect can be observed which illustrates the sensitivity of the serial
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fraction metric. The two, three and four processorcaseshave a larger serial fraction on
the Hyperclusterthan on the other machines. The serial fraction then drops off as more
processorsareused. The Hyperclusterusesa multiprocessornode, where four processors
are connectedby a high-speedbus to sharedmemory. The multiprocessornodes are then
interconnected in a hypercubeconfiguration. The parallelcode runs entirely within a node
for up to four processors. Buscontention would be expectedto increaseas more
processorswithin the node areused. This would explainthe increase in serial fraction for
these cases. The hypercubenetwork is then used when more than four processorsare
required. The parallelcommunicationsoffered by the hypercubeconnection then dilute the
effects of the intranode buscontention.

A detailed analysis of the results reveals some of the causes of the inefficiency.
Performance information for an eight-processor version of ISTAGE on the iPSC/860 was
gathered using Intel's Performance Analysis Tools (PAT) (ref. 36). A histogram showing
the composition of the time spent in each processor is shown in Figure 5. The processor
numbers are ordered by their location in the ring mapping sequence. The performance
data clearly show a load imbalance among the processors. This is evidenced by the
variation in the height of the bars indicating actual computation time. The ordering of the
bars correlates with the axial position in the computational domain. It can be seen that the
amount of computation in each processor increases as the center of the domain is
approached, peaks, and then begins to decrease.

The boundary conditions are the largest contributor to the load imbalance. Processors
computing the first and last subdomains must also compute inlet and exit boundary
conditions. Also, the grid extends upstream and downstream of the blade surface. The
processors assigned to this region of the grid do not have to compute the solid surface
boundary conditions. The load imbalance due to the blade surface boundary appears to be
the major problem. This is due to the fact that both the first and last processors finish
computations before the other processors. This is despite the fact that these processors
have additional work that the others do not (due to inlet and exit boundary conditions).

The amount of time spent in the communication routines is also shown. There is currently
some debate as to the quantitative accuracy of these performance analysis tools.
However, they do give useful qualitative information. They can also give an indication of
relative performance improvements for different versions of the code.

The effects of the load imbalance and communication are not too serious for the eight-

processor case. A speedup of better than 6 is achieved on all machines tested. The
effects are more pronounced as more processors are used. Communication time does play
more of a role as increasing the number of processors reduces overall computation time.
There are other factors related to communication which also contribute to inefficiency.

For example, information from the triple indexed arrays must be gathered to and scattered
from communication buffers. This does not show up directly as a communication cost,

but is extra work that the processors must do over the serial code.

The second test case was a coarse-grain partitioning of the viscous version of the average-
passage code, MSTAGE. Each blade row was computed on a separate processor. The
information transferred between blade rows is small compared to the overall calculation,
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and was communicated through messagepassing. The parallelversion of MSTAGEwas
implementedon the Hyperclusterand a network of IBM RS/6000-560 workstations. The
workstations were connected to a sharedethernet using the TCP/IPprotocol. APPLis
again used for the interprocessor communication.

The Hypercluster version executes 15 cycles of the Runge-Kutta integration procedure
before information is transferred between blade rows. The number of cycles is selected in

this case to allow reasonable run times. The high speed of the RS/6000 processor allowed
45 cycles to be executed. The latter number of cycles is more typical of a turbomachinery
calculation. The large computation to communication ratio coupled with the high
performance of the RS/6000 workstation resulted in impressive performance, as shown in
Table 4. Note that the achieved speedup on the Hypercluster is higher than on the
RS/6000's. This is probably due to the faster internode communication and file I/0 on the
Hypercluster. A common file system, accessed via the Network File System (NFS), is
used for all I/O on the networked RS/6OO0's.

An interesting observation is that both of the test cases shown above do not perform
equally well on all architectures. The medium-grain parallel code, ISTAGE, was
implemented on the network of RS/6000 workstations. The two workstation case took
almost twice as long to execute than the single workstation case. In contrast, the current
version of the parallel MSTAGE code cannot run on the iPSC/860 due to lack of sufficient
memory for the grid sizes deemed reasonable for this code. A medium-grain version of
MSTAGE is currently under development which should alleviate this problem. It is
anticipated that the lower performance of the i860 microprocessor will require more
processors to be utilized than in the RS/6000 case. The above experience indicates that
one must carefully match a parallel application to a hardware platform. This will continue
to be the case until convergence is reached in parallel computing hardware and software
design.

FUTURE PLANS AND CONCLUDING REMARKS

Work is currently in progress to implement a medium-grain version of the MSTAGE code,
as mentioned earlier. This will allow the code to run on machines such as the iPSC/860.

It will also allow the determination of a "crossover point", where a sufficient number of
processors on the iPSC/860 meets or exceeds the performance of the networked
RS/6OOO's. The highest performance version of MSTAGE will be incorporated into the ICE
environment described earlier. This will allow runs of MSTAGE to be performed for
experimental setup and data analysis. The availability of experimental data in the ICE
environment will allow use of the data for initializing boundary conditions and initial flow
fields in the MSTAGE code. The ideal interactive use of MSTAGE will not be likely with
current parallel hardware, but at least the infrastructure will be in place. Interactive use
may be possible with a two-dimensional viscous or three-dimensional Euler code, however.

These options will be investigated.

The networked RS/6000 version of MSTAGE will be used to demonstrate the zooming
concept in NPSS. A lumped parameter propulsion system simulation will be modified to
request compressor map information from the parallel version of MSTAGE. Map
information is typically required for several different operating points (e.g speed and
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pressureratio). The information for each point requiresa separaterun of the parallel
MSTAGEcode. Eachoperating point can essentiallybecomputed in parallelon a "bank"
of workstations. The numberof workstations used in each bank is selected as a function

of the number of map points required. For example, if parallel MSTAGE operates at an
efficiency of 95% on four workstations, and eight map points are required, 32
workstations could be utilized. Performance for this configuration, based on current timing
estimates for RS/6000-560's, would reach 464 MFLOPs. This is over three times the

performance of MSTAGE on a single Cray Y-MP processor.

If the number of points required exceeds the number of workstations available, it may be
better to run a serial version of MSTAGE on each workstation. This is due to the fact that

the serial version runs at 100% efficiency. The decision would most likely be based on
the amount of memory available on each workstation. One of the benefits of distributed-
memory parallel computing is the reduced memory required on each processor. The serial
version of MSTAGE could exceed the core memory capacity of the workstation. Excessive
page swapping could result, reducing performance, and again make the parallel version of
MSTAGE attractive. Considerations such as these illustrate the need for sophisticated
resource allocation software on parallel computers.

The use of networked workstations, in particular the RS/6000's, has proven attractive for
a number of reasons. First, the power of the RS/6000 processor allows good performance
to be achieved using only coarse-grain partitioning. This would also be the case on the
"traditional" parallel computers, such as the iPSC/860, if the single-processor performance
were improved. Future improvements in processor and compiler technology should allow
this to occur. Second, unused cycles on idle workstations could potentially be utilized.
Ideally, software would be provided to manage the allocation of workstations and balance
the work distribution.

Parallel computing offers high potential for providing the teraflops performance required for
future applications. Hardware and ,especially, software, are as yet immature. This is

expected to improve in the future. The high performance/cost ratios available with
parallel computers will make the interactive use of digital computers a reality for
applications such as ICE and NPSS.

,
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Figure 5 - Performance statistics for parallel ISTAGE

Number of
Processors

4

7

Hypercluster

Time, sec.

109.72

64.66

42.58

Speedup

I .70

2.58

3.23

Time, sec.

iPSCI860

Speedup

154.80

90.12

59.26

33.98 44.19

1.72

2.61

3.50

Table 1 - Performance of ISTAGE with serial Thomas algorithm
42xl lxl I grid, 20 iterations
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Numberof Processors
Hypercluster

Time, sec. Speedup

1 359.79

2 194.44 1.85

3 149.11 2.41

4 116.96 3.08

6 89.57 4.02

8 75.41 4.77

12 63.20 5.69

Table 2 - Performance of ISTAGE with serial Thomas algorithm
96xl lxl I grid, 20 iterations

Number of iPSC/860 Hypercluster Delta
Processors

Speedup Serial Speedup Serial Speedup Serial
Fraction Fraction Fraction

2 1.92 .042 1.93 .036 1.92 .042

3 2.67 .062 2.65 .066 2.67 .062

4 3.51 .046 3.41 .058 3.51 .046

6 4.95 .042 4.90 .045 5.00 .040

8 6.28 .039 6.06 .046 6.32 .038

12 8.45 .038 8.24 .041 8.53 .037

15 9.70 .039 9.61 .040 9.69 .039

20 11.27 .040 11.47 .039 11.57 .038

Table 3 - Serial fractions for parallel ISTAGE
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Hypercluster RS6000 CrayY-MP
Numberof
Processors Time Speedup Time Speedup Time (sec)* *

(sec) * (sec) * *

1 40,185 - 16,780 - 1,714

2 20,231 1.99 8,760 1.92

4 10,272 3.91 4,443 3.78

* 15 cycles
** 45 cycles

Table 4 - Parallel MSTAGE Performance, 218x31x31 grid
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